
Finding Interpretable Policy Representations: Studying policies learned by PPO 
and DQN on the simple environment Mountain Car.
• PPO and DQN’s respective policies behave differently in the state-action space

• PPO’s policy has clustered actions based on regions within the state space. 
Meanwhile, DQN’s policy does not show any association between an action and 
its position in the state space. Due to this, PPO’s policy can easily be extracted 
from the scatterplot when compared to DQN.

• Explored ways to extract human-readable policies from black-box models.
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Key Takeaways:
•By evaluating one algorithm on a variety of 
environments, we can start to uncover exactly 
which characteristics make an algorithm optimal 
for an environment.
•Different algorithms’ policies vary in how 
they interact with the state-action space. Whether 
this is due to the environment or the algorithm 
itself needs to be explored.

Future Work:
•Explainability

▪Study state abstraction across more complex 
environments.
▪Evaluate how different representations scale 
with environment type.
▪Implementing clustering based approach for 
extracting MDP in the state-action space.

•Defining Environment Types
▪Using the extracted MDP representations, 
compress and cluster various environments to 
group environments and discover their 
similarities.

•Evaluation of Algorithm Types
▪Evaluate how other agent’s performance is 
impacted on more complex environments.

Reinforcement learning (RL) is a subcategory of machine learning where an 
agent learns how to act in an environment by repeatedly learning what actions 
and strategy maximize a total cumulative reward. The environment can be complex 
(large state and action spaces) and hard to interpret, and the relationship between 
environment characteristics is not well understood. These observations lead toward 
two research goals: 

(1) Explore and quantify the relationship between the accuracy of RL algorithms 
and environment properties. For example, RL algorithms may generally perform 
better in low-dimensional state spaces. 

(2) Find interpretable policy representations that maintain agent 
performance. For example, modeling agent policies using Markov Decision 
Processes (MDPs) could reveal regions in an environment where agents are 
more prone to certain actions. 

Current Work

History: For applications in 
medical, financial, and 
government fields, "black-box" 
models may not always be 
suitable systems for making 
predictions, regardless of high 
performance.  In these 
applications, the agent's 
decision-making process must 
be transparent to ensure 
trustworthy and safe autonomy.

Fig 5. Training curves for DQN under “LunarLander” environment.

Performance Comparison: Investigated RL algorithm performance across different 
environments to study variability in training performance.
• With RL's high computational complexity, it may not always be feasible to train a 

variety of algorithms on the same task before selecting the final model.

• Analyzed how changes in the state-action space affect convergence and policy quality.

Fig 4. Training curves for DQN under “CartPole” environment.

Running Cumulative Reward begins 
increasing immediately

Running 
Cumulative 
Reward only 
begins increasing 
after 1000 
episodes

The Theoretical Framework The Theoretical Framework 

(1) The behaviors of RL agents 
acting in environments can be 
challenging to understand… 

(2) Extracting interpretable 
“policies” could simplify 

behavior comprehension…

(3) Quantifying algorithm 
complexity-accuracy relationships 
could streamline model selection.

?

Fig. 1 Comparing black box and interpretable models.

Challenges: Many RL algorithms use black boxes to learn the when to act in environment 
states – understanding (1) what RL algorithms lean and (2) when to use certain algorithms 
learned are open challenges. How can we learn when to use certain algorithms and understand 
the insights leveraged by each model? 

Approach: Our approach is to extract an MDP that represent an algorithm's policy and 
interpret characteristics of the environment from this MDP that may reveal when certain 
algorithms perform better in certain environments. 

Fig 2. The State-Action Space of Mountain Car for PPO agent. The red line seen 
within the 2D scatterplot corresponds to the extracted policy for PPO. Due to the 

ability to easily extract the policy, we can easily represent it as an MDP.

Fig 3. The State-Action Space of Mountain Cart for DQN agent. Due 
to the inability to extract the policy from the state-action space, an 

associated MDP could not be represented.
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Objective: Keep a 
pole balanced upright 
on a moving cart only 
by applying left/right 
forces.

Characteristics: 
Low-dimensional 
state and action 
spaces (simple task).

Objective: Land a 
spacecraft softly 
between flags on a 
2D plane.

Characteristics: 
State and action 
spaces have 
medium-sized 
dimensionality 
(more complexity).

Objective: Drive a 
car up a steep hill, 
but engine is not 
powerful enough to 
propel up the entire 
hill in one go. Must 
learn to leverage 
momentum.

Characteristics: 
Low-dimensional 
state and action 
spaces.

Fig 6. Visual representation 
of “Cart Pole” environment.

Fig 7. Visual representation 
of “Lunar Lander” 

environment.

Fig 8. Visual representation 
of “Mountain Car” 

environment.

Fig 9. Abstraction of agent 
performance dependency on both 
environment characteristics and 

choice of RL algorithm.

Fig 10. Policy extraction using a 
clustering-based approach.
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