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Abstract Current Work Environments Under Test
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Reinforcement learning (RL) is a subcategory of machine learning where an Finding Interpretable Policy Representations: Studying policies learned by PPO Cart Pole Lunar Lander Mountain Car
agent learns how to act in an environment by repeatedly learning what actions and DQN on the s,1mp1e environment Mountain Car. : o
and strategy maximize a total cumulative reward. The environment can be complex * PPOand I? QN S respective policies l.)ehave dlfferentlv. AL the. state-action space Objective: Keep a Objective: Land a Objective: Drive a
(large state and action spaces) and hard to interpret, and the relationship between * PPO’s po.hcy has ?luste.red actions based on SO0k “flthm the state S pritie: pole balanced upright ~ spacecraft softly car up a steep hill,
environment characteristics is not well understood. These observations lead toward Meanwhile, DQN's policy does not show any association between an action and on a moving cart only = between flagson a but engine is not
two research goals: its position in the state space. Due to this, PPO’s policy can easily be extracted by applying left/right oD plane. powerful enough to
from the scatterplot when compared to DQN. forces propel up the entire
(1) Explore and quantify the relationship between the accuracy of RL algorithms * Explored ways to extract human-readable policies from black-box models. Characteristics: hill in one go. Must
and environment properties. For example, RL algorithms may generally perform Characteristics: State and action learn totleverage
better in low-dimensional state spaces. ; | _ Low-dimensional spaces have momentum.
- state and action H}edlun}—51ze‘:d Ch Ceristicss
(2) Find interpretable policy representations that maintain agent " spaces (simple task). dimensionality aracteristuces:
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(more complexity).

performance. For example, modeling agent policies using Markov Decision
Processes (MDPs) could reveal regions in an environment where agents are o
more prone to certain actions.
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Fig 2. The State-Action Space of Mountain Car for PPO agent. The red line seen
within the 2D scatterplot corresponds to the extracted policy for PPO. Due to the
ability to easily extract the policy, we can easily represent it as an MDP.
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g ® environment. environment.
History: For applications in . G )
medlcal’ 1f1nan(:1a1, and Input Data Black Box Model Model Fig 3. The State-Action Space of Mountain Cart for DQN agent. Due
government fields , "black-box" (X) a Du{’%uts to the inability to extract the policy from the state-action space, an
models may not always be J_ \_ associated MDP could not be represented. )
suitable systems for making
predictions, regardless of high C N
performance. In  these = W, Wy Wy @ ’ Performance Comparison: Investigated RL algorithm performance across different
1catl ' [nt table| J(w) Model . - o oo o . .
applications, ~ the  agent's pan :>ﬁ§£m e R, ) Outts environments to study variability in training performance.
decision-making process must L £, 0, 11,0 ¥ : e : S : : Key Takeawavs:
be transparent to ensure L — - « With RL's high computational complexity, it may not always be feasible to train a A 1Ways. . .
trustworthy and safe autonomy. variety of algorithms on the same task before selecting the final model. "By .evaluatmg one algorithm on a variety of SzeciSites Y Aortm
Fig. 1 Comparing black box and interpretable models. «  Analyzed how changes in the state-action space affect convergence and policy quality. en\{lronments, we can start to uncover exactly
which characteristics make an algorithm optimal
Challenges: Many RL algorithms use black boxes to learn the when to act in environment Reward per Episode Running Cumulative Reward for an environment.
states — understanding (1) what RL algorithms lean and (2) when to use certain algorithms 70 { [T Rewerd per Fpsode 10000 1{—— Running Cumulative Reward

| | | *Different algorithms’ policies vary in how
" g 00| inereasing immedistely o they interact with the state-action space. Whether
3 T this is due to the environment or the algorithm
itself needs to be explored.

learned are open challenges. How can we learn when to use certain algorithms and understand
the insights leveraged by each model?
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Approach: Our approach is to extract an MDP that represent an algorithm's policy and
interpret characteristics of the environment from this MDP that may reveal when certain
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algorithms perform better in certain environments. 7 Future Work: enViz%%ﬁzlztfﬁﬁlzgﬁifﬁf and
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Fig 4. Training curves for DQN under “CartPole” environment. ] )
with environment type.
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(1) The behaviors of RL agents  (2) Extracting interpretable (3) Quantifying algorithm ] TenolE per Fpece. — N Running Cumurative _ *"Implementing clustering based approach for
acting in environments can be “policies” could simplify complexity-accuracy relationships Running extracting MDP in the state-action space. g ...
challenging to understand... behavior comprehension... could streamline model selection. 7 Ic{umulgﬁvi ‘Defining Environment Types e
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